Iterative Dichotomiser-3 Algorithm in Data Mining Applied to Diabetes Database

نویسنده

  • P. Vasudevan
چکیده

In this study, eight major factors playing significant role in the Pima Indian population are analyzed. Real time data is taken from the large dataset of National Institute of Diabetes and Digestive and Kidney Diseases. The data is subjected to an analysis by logistic regression method using SPSS 7.5 statistical software, to isolate the most significant factors among the eight factors taken. Then the significant factors are further applied to decision tree technique called the Iterative Dichotomiser-3 algorithm which leads to significant conclusions about this diabetes disorder which poses to be a greatest threat to mankind in the coming era. Conglomeration of data mining techniques and medical data base research can lead to life saving conclusions for the physicians at critical times to save the mankind.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of Decision Tree Algorithms to Identify Pivotal Factors for Performance Improvement: A Review

Decision tree is a data mining technique used for the classification and forecasting of the data. It is the supervised learning algorithm that follows the greedy approach and works in a top down manner. Decision tree uses white box model approach and classifies the data in a hierarchical structure. It makes data easy to represent and understand. It can handle a large database and works well wit...

متن کامل

Comparative Study of ID3/C4.5 Decision tree and Multilayer Perceptron Algorithms for the Prediction of Typhoid Fever

Data mining is an essential phase in knowledge discovery in database which is actually used to extract hidden patterns from large databases. Data mining concepts and methods can be applied in various fields like marketing, medicine, real estate, customer relationship management, engineering, web mining, etc. The main objective of this paper is to compare the performance accuracy of Multilayer p...

متن کامل

Diagnosis of diabetes by using a data mining method based on native data

Background & Aim: Detecting the abnormal performance of diabetes and subsequently getting proper treatment can reduce the mortality associated with the disease. Also, timely diagnosis will result in irreversible complications for the patient. The aim of this study was to determine the status of diabetes mellitus using data mining techniques. Methods: This is an analytical study and its databas...

متن کامل

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

متن کامل

Comparison of the Efficiency of Data Mining Algorithms in Predicting the Diagnosis of Diabetes

Background: Diabetes is one of the major health problems in Iran and about 4.6 million adults suffer from this disease. Poor diagnosis of this disease has caused half of this number to be unaware of their disease. In recent years, along with the use of computers in data analysis and storage, the volume and complexity of data has increased dramatically. Methods: In health organizations, data pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCS

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014